Abstract

Pollen can decrease (via reduced consumption) or increase (via numerical response) an omnivores consumption of animal prey. Although pollen can increase predation pressure through numerical responses of omnivores, pollen may also suppress predation by increasing omnivore interactions with conspecifics. Despite this potential, studies of the impacts of pollen on predation by omnivores often overlook the effect of these tissues on intraspecific interactions between omnivores. We designed three studies to examine how Spartina foliosa pollen and conspecific density impact scale insect prey consumption by ladybeetle (Naemia seriata) omnivores. First, we assessed how pollen impacts scale insect consumption by isolated ladybeetles. Second, we measured how pollen influences ladybeetle prey suppression when numerical responses were possible. Third, because initial experiments suggested the consumption rates of individual ladybeetles depended on conspecific density, we compared per capita consumption rates of ladybeetles across ladybeetle density. Pollen did not influence prey consumption by isolated ladybeetles. When numerical responses were possible, pollen did not influence total predation on prey despite increasing ladybeetle density, suggesting that pollen decreased per capita prey consumption by ladybeetles. The discrepancy between these studies is likely a consequence of differences in ladybeetle density—the presence of only two other conspecifics decreased per capita prey consumption by 76%. Our findings suggest that pollen may not alter the population level effects of omnivores on prey when omnivore numerical responses are offset by reductions in per capita predation rate.

Highlights

  • IntroductionOmnivory (i.e. consuming resources from multiple trophic levels) [1] is ubiquitous within several taxa (e.g. birds, mammals, reptiles, insects, and fishes) and influences the structure and function of communities [2,3]

  • Omnivory [1] is ubiquitous within several taxa and influences the structure and function of communities [2,3]

  • Rinehart personal observation), consumption of adult, crawler, and total scale insects by isolated ladybeetles was not affected by access to cordgrass flowers (Adults: t6.59 = 0.052, p = 0.96; Crawlers: t5.32 = 0.596, p = 0.576; Total: t7.89 = 0.216, p = 0.834; Fig 1)

Read more

Summary

Introduction

Omnivory (i.e. consuming resources from multiple trophic levels) [1] is ubiquitous within several taxa (e.g. birds, mammals, reptiles, insects, and fishes) and influences the structure and function of communities [2,3]. Interactions between omnivores and their plant and animal prey can account for up to 78% of species’ links in food webs [4]. Fellowship (http://move-ecol-minerva.huji.ac.il/) to S.R. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call