Abstract

In this work, a commercially pure titanium powder has been consolidated using the Electrical Resistance Sintering (ERS) process. This technique consists in the consolidation of a powder mass by the simultaneous application of pressure (80 MPa, in this work) and heating caused by the passage of a high intensity (3.5-6.0 kA, in this case) and low voltage current (lower than 10 V), during short dwelling times (0.8-1.6 s, in this work). The resulting compacts have been mechanically characterised by measuring their microhardness distribution. The results obtained are compared with the corresponding values of compacts prepared with the same powders following the conventional P/M route of cold pressing and furnace sintering. The results of some simulations are provided to give information about the temperatures reached inside the compacts during the electrical consolidation process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.