Abstract
Vacuum preloading combined with prefabricated vertical drains (PVDs) has been widely used to improve soft clayey soil deposits. However, the consolidation deformation of high-water-content slurry under vacuum pressure is still not fully understood. In this study, the displacement field of the slurry during vacuum preloading was directly observed using the particle image velocimetry (PIV) technique. The test results showed that the displacement field of the slurry could be divided into three different zones that reflect distinct consolidation patterns. In zones I and III, the slurry was predominantly compressed along the horizontal and vertical directions, respectively, whereas in zone II, compression occurred in both vertical and horizontal directions. In particular, the slurry elements in zones I and II underwent horizontal extension prior to horizontal compression. The study also visualized the boundary of the soil column and provided an equation for the relation between soil column thickness and consolidation time, which could provide a reference for the theoretical consolidation calculations related to soil columns.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.