Abstract
Invented in the 1960s, permutation codes have reemerged in recent years as a topic of great interest because of properties making them attractive for certain modern technological applications, especially flash memory. In 2011 a polynomial time algorithm called linear programming (LP) decoding was introduced for a class of permutation codes where the feasible set of codewords was a subset of the vertex set of a code polytope. In this paper we investigate a new class of linear constraints for matrix polytopes with no fractional vertices through a new concept called “consolidation.” We then introduce a necessary and sufficient condition for which LP decoding methods, originally designed for the Euclidean metric, may be extended to provide an efficient decoding algorithm for permutation codes with the Kendall tau metric.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.