Abstract

Sleep is involved in both the consolidation of discrete episodes, as well as the generalisation of acquired memories into schemata. Here, we have isolated early versus late periods of sleep in order to replicate previous behavioural findings and to demonstrate: i) that distinct sleep and sleep electroencephalography (EEG) factors influence the generalisation of learned information, and; ii) that the consolidation and generalisation of memory across sleep depends on individual alpha frequency (IAF) and strength of initial encoding. Subjects underwent a night-half protocol with polysomnography (PSG), and completed a Chinese character-English paired associates learning task. Recognition accuracy of learned word-pairs, the extent to which the subject was able to generalise this knowledge, and the extent of explicit transfer of knowledge were measured. Results demonstrate that quality of initial learning determined the relationship between sleep neurophysiology and outcome, with IAF modulating this effect. We also note an effect of IAF in modulating the effect of sleep spindles in determining generalisation of learned materials. Finally, we note a complex relationship between initial learning, IAF and sleep spindle density in determining when information will reach explicit awareness across sleep. Together, these data implicate encoding factors in subsequent offline processing, demonstrate a potential role for individual differences in the EEG and subsequently add to our understanding of the the conditions in which sleep may benefit both memory and learning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call