Abstract
Consolidated bioprocesses for bioconversion of lignocellulosic biomass into biodiesel feedstocks were developed. Palm empty fruit bunch (EFB) was biologically pretreated coupling with fungal lipid production (121.4 ± 2.7 mg/g-EFB) by lignocellulolytic oleaginous fungi prior to lipid production by oleaginous yeasts. In subsequent separate hydrolysis and fermentation (SHF) of fungal pretreated EFB (FPEFB), the oleaginous yeast with the maximum lipid yield of 37.0 ± 0.1 mg/g-FPEFB was screened. While a higher lipid yield of 47.9 ± 1.5 mg/g-FPEFB was achieved in simultaneous saccharification and fermentation (SSF) with less enzyme requirement. Fed-batch SSF of non-sterile FPEFB was proven as a practical and efficient strategy to increase lipid yield up to 53.4 ± 0.5 mg/g-FPEFB. Total lipid yield by both fungi and yeast was 165.0 ± 4.4 mg/g-EFB. Interestingly, the consolidated bioprocesses of enzyme and lipid production also achieved comparable total lipid yield of 149.3 ± 6.6 mg/g-EFB. These strategies may contribute greatly to cost-effective and sustainable bioconversion of lignocellulosic biomass into biodiesel feedstocks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.