Abstract

In recent years, the application of deep learning in molecular de novo design has gained significant attention. One successful approach involves using SMILES representations of molecules and treating the generation task as a text generation problem, yielding promising results. However, the generation of more effective and novel molecules remains a key research area. Due to the fact that a molecule can have multiple SMILES representations, it is not sufficient to consider only one of them for molecular generation. To make up for this deficiency, and also motivated by the advancements in contrastive learning in natural language processing, we propose a contrastive learning framework called CONSMI to learn more comprehensive SMILES representations. This framework leverages different SMILES representations of the same molecule as positive examples and other SMILES representations as negative examples for contrastive learning. The experimental results of generation tasks demonstrate that CONSMI significantly enhances the novelty of generated molecules while maintaining a high validity. Moreover, the generated molecules have similar chemical properties compared to the original dataset. Additionally, we find that CONSMI can achieve favorable results in classifier tasks, such as the compound-protein interaction task.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call