Abstract

Maternal hormones are an excellent pathway for the mother to influence offspring development, and birds provide exceptional opportunities to study these hormone-mediated maternal effects. Two dominant hypotheses about the function of yolk androgens in avian eggs concern maternal manipulation of sibling competition and post hatching paternal care. In megapodes, however, neither sibling competition nor post hatching parental care exists. Eggs are incubated by external heat sources, and chicks dig themselves out of their underground nest and live independently of their parents and their siblings. In this first study on egg androgens of such a megapode, the Australian Brush-turkey Alectura lathami, we found nevertheless substantial amounts of maternal androgens. Since size of the incubation mound, incubation temperature, egg size and laying date greatly vary in this species, we analysed variation in testosterone (T), androstenedione (A4) and dihydrotestosterone (DHT) in relation to these factors. T concentrations were significantly higher in eggs from bigger mounds and laid at greater depth, which may compensate via anabolic effects for the longer duration and higher energetic requirements of chicks when digging themselves out. T concentrations were higher in smaller eggs, and both yolk A4 and T concentrations increased with laying date, perhaps as a compensatory measure, while DHT concentrations only varied across different mounds. These results indicate that maternal androgens may influence offspring development outside the contexts of sibling competition or parental care.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.