Abstract
The stability of the standard model is determined by the true minimum of the effective Higgs potential. We show that the potential at its minimum when computed by the traditional method is strongly dependent on the gauge parameter. It moreover depends on the scale where the potential is calculated. We provide a consistent method for determining absolute stability independent of both gauge and calculation scale, order by order in perturbation theory. This leads to a revised stability bounds m(h)(pole)>(129.4±2.3) GeV and m(t)(pole)<(171.2±0.3) GeV. We also show how to evaluate the effect of new physics on the stability bound without resorting to unphysical field values.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.