Abstract

This paper presents a consistent three-dimensional elasto-plastic model to study unsaturated soil behavior with consideration of coupled hydro-mechanical hysteresis. The model was first formulated under isotropic conditions with special consideration to the non-linearity of the hydraulic behavior. Only one yield curve is used to represent the yielding of both mechanical and hydraulic behaviors (i.e., the occurrence of plastic water content changes and mechanical strains). Later, the model is extended to general three-dimensional stress conditions. It was formulated in a way that a smooth transition between the saturated and unsaturated soil states is guaranteed. The model provides consistent predictions for different soil phases that is considered a significant limitation in many existing models. One of the characteristic features of the proposed model is the ability to represent the hydro-mechanical coupling during shearing. Moreover, the model is able to represent the degree of saturation increase or decrease during shearing that is closely related to the soil’s contractive or dilative behavior, respectively. The model is validated through the prediction of several hydro-mechanical behavioral features. The paper also compares the model predictions with published experimental results performed under different loading conditions. The response of the model is satisfactory in relation to both mechanical and hydraulic behaviors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.