Abstract

It is shown that for problems involving rate constitutive equations, such as rate-independent elastoplasticity, the notion of consistency between the tangent (stiffness) operator and the integration algorithm employed in the solution of the incremental problem, plays a crucial role in preserving the quadratic rate of asymptotic convergence of iterative solution schemes based upon Newton's method. Within the framework of closest-point-projection algorithms, a methodology is presented whereby tangent operators consistent with this class of algorithms may be systematically developed. To wit, associative J 2 flow rules with general nonlinear kinematic and isotropic hardening rules, as well as a class of non-associative flow rules are considered. The resulting iterative solution scheme preserves the asymptotic quadratic convergence characteristic of Newton's method, whereas use of the socalled elastoplastic tangent in conjunction with a radial return integration algorithm, a procedure often employed, results in Newton type of algorithms with suboptimal rate of convergence. Application is made to a set of numerical examples which include saturation hardening laws of exponential type.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.