Abstract

In this paper, we build and analyze the stability and consistency of decoupled schemes, involving only explicit steps, for the isentropic Euler equations and for the full Euler equations. These schemes are based on staggered space discretizations, with an upwinding performed with respect to the material velocity only. The pressure gradient is defined as the transpose of the natural velocity divergence, and is thus centered. The velocity convection term is built in such a way that the solutions satisfy a discrete kinetic energy balance, with a remainder term at the left-hand side which is shown to be non-negative under a CFL condition. In the case of the full Euler equations, we solve the internal energy balance, to avoid the space discretization of the total energy, whose expression involves cell-centered and face-centered variables. However, since the residual terms in the kinetic energy balance (probably) do not tend to zero with the time and space steps when computing shock solutions, we compensate them by corrective terms in the internal energy equation, to make the scheme consistent with the conservative form of the continuous problem. We then show, in one space dimension, that, if the scheme converges, the limit is indeed an entropy weak solution of the system. In any case, the discretization preserves by construction the convex of admissible states (positivity of the density and, for Euler equations, of the internal energy), under a CFL condition. Finally, we present numerical results which confort this theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.