Abstract

Two fundamental axioms in social choice theory are consistency with respect to a variable electorate and consistency with respect to components of similar alternatives. In the context of traditional non-probabilistic social choice, these axioms are incompatible with each other. We show that in the context of probabilistic social choice, these axioms uniquely characterize a function proposed by Fishburn (1984). Fishburn's function returns so-called maximal lotteries, that is, lotteries that correspond to optimal mixed strategies in the symmetric zero-sum game induced by the pairwise majority margins. Maximal lotteries are guaranteed to exist due to von Neumann's Minimax Theorem, are almost always unique, and can be efficiently computed using linear programming. [web URL: http://onlinelibrary.wiley.com/doi/10.3982/ECTA13337/abstract]

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.