Abstract
AbstractPhoton mapping is a light transport algorithm that simulates various rendering effects (e.g., caustics) robustly, and its progressive variants, progressive photon mapping (PPM) methods, can produce a biased but consistent rendering output. PPM estimates radiance using a kernel density estimation whose parameters (bandwidths) are adjusted progressively, and this refinement enables to reduce its estimation bias. Nonetheless, many iterations (and thus a large number of photons) are often required until PPM produces nearly converged estimates. This paper proposes a post‐reconstruction that improves the performance of PPM by reducing residual errors in PPM estimates. Our key idea is to take multiple PPM estimates with multi‐level correlation structures, and fuse the input images using a weight function trained by supervised learning with maintaining the consistency of PPM. We demonstrate that our technique boosts an existing PPM technique for various rendering scenes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.