Abstract

The estimation of 3D surface correspondence constitutes a fundamental problem in shape matching and analysis applications. In the presence of non-rigid shape deformations, the ambiguity of surface correspondence increases together with the complexity of registration algorithms. In this paper, we alleviate this problem by using One-Class Support Vector Machines (OCSVM) in order to normalize the pose of 3D objects. We show how OCSVM are employed in order to increase the consistency of translation and scale normalization under articulations, extrusions or the presence of outliers. To estimate the relative translation and scale of an object, we use the 3D distribution of points that is modelled by employing OCSVM to estimate the decision surface corresponding to the surface points of the object. To evaluate the performance, we use a dataset of 3D objects where we introduce various extrusions, articulations or outliers and demonstrate the increased robustness of the proposed methodology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.