Abstract
We revisit the renormalization prescription for the quark-meson model in an extended mean-field approximation, where vacuum quark fluctuations are included. At a given cutoff scale the model parameters are fixed by fitting vacuum quantities, typically including the sigma-meson mass $m_\sigma$ and the pion decay constant $f_\pi$. In most publications the latter is identified with the expectation value of the sigma field, while for $m_\sigma$ the curvature mass is taken. When quark loops are included, this prescription is however inconsistent, and the correct identification involves the renormalized pion decay constant and the sigma pole mass. In the present article we investigate the influence of the parameter-fixing scheme on the phase structure of the model at finite temperature and chemical potential. Despite large differences between the model parameters in the two schemes, we find that in homogeneous matter the effect on the phase diagram is relatively small. For inhomogeneous phases, on the other hand, the choice of the proper renormalization prescription is crucial. In particular, we show that if renormalization effects on the pion decay constant are not considered, the model does not even present a well-defined renormalized limit when the cutoff is sent to infinity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.