Abstract

Many optimization problems (from academia or industry) require the use of a local search to find a satisfying solution in a reasonable amount of time, even if the optimality is not guaranteed. Usually, local search algorithms operate in a search space which contains complete solutions (feasible or not) to the problem. In contrast, in Consistent Neighborhood Search (CNS), after each variable assignment, the conflicting variables are deleted to keep the partial solution feasible, and the search can stop when all the variables have a value. In this paper, we formally propose a new heuristic solution method, CNS, which has a search behavior between exhaustive tree search and local search working with complete solutions. We then discuss, with a unified view, the great success of some existing heuristics, which can however be considered within the CNS framework, in various fields: graph coloring, frequency assignment in telecommunication networks, vehicle fleet management with maintenance constraints, and satellite range scheduling. Moreover, some lessons are given in order to have guidelines for the adaptation of CNS to other problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.