Abstract

Through systematic Reef Life Survey censuses of rocky reef fishes, invertebrates and macroalgae at eight marine reserves across northern New Zealand and the Kermadec Islands, we investigated whether a system of no-take marine reserves generates consistent biodiversity outcomes. Ecological responses of reef assemblages to protection from fishing, including potential trophic cascades, were assessed using a control-impact design for the six marine reserves studied with associated reference sites, and also by comparing observations at reserve sites with predictions from random forest models that assume reserve locations are fished. Reserve sites were characterised by higher abundance and biomass of large fishes than fished sites, most notably for snapper Chrysophrys auratus, with forty-fold higher observed biomass inside relative to out. In agreement with conceptual models, significant reserve effects not only reflected direct interactions between fishing and targeted species (higher large fish biomass; higher snapper and lobster abundance), but also second order interactions (lower urchin abundance), third order interactions (higher kelp cover), and fourth order interactions (lower understory algal cover). Unexpectedly, we also found: (i) a consistent trend for higher (~20%) Ecklonia cover across reserves relative to nearby fished sites regardless of lobster and urchin density, (ii) an inconsistent response of crustose coralline algae to urchin density, (iii) low cover of other understory algae in marine reserves with few urchins, and (iv) more variable fish and benthic invertebrate communities at reserve relative to fished locations. Overall, reef food webs showed complex but consistent responses to protection from fishing in well-enforced temperate New Zealand marine reserves. The small proportion of the northeastern New Zealand coastal zone located within marine reserves (~0.2%) encompassed a disproportionately large representation of the full range of fish and benthic invertebrate biodiversity within this region.

Highlights

  • New Zealand has played a key role in the development of marine protected areas (MPAs) worldwide

  • It was arguably the first country to recognise a critical need for protection of its biodiversity heritage through the establishment of a network of marine reserves, a process facilitated by the Marine Reserves Act 1971 [1–3], and more recently the New Zealand Marine Protected Areas Policy and Implementation Plan [4]

  • Public benefits generated by marine reserve networks have been suggested to include: (i) safeguarding representative examples of local marine biodiversity for future generations, (ii) providing reference sites for scientific research that are relatively free from human impacts, (iii) augmenting opportunities for non-extractive recreational and educational activities, and (iv) providing insurance against fishery stock collapse during an era of changing climate when traditional fisheries management models are set in a context exceeding known environmental bounds [6]

Read more

Summary

Introduction

New Zealand has played a key role in the development of marine protected areas (MPAs) worldwide. It was amongst the first countries to establish a no-fishing MPA (i.e. a ‘marine reserve’), with the Cape Rodney to Okakari Point Marine Reserve declared in 1975. It was arguably the first country to recognise a critical need for protection of its biodiversity heritage through the establishment of a network of marine reserves, a process facilitated by the Marine Reserves Act 1971 [1–3], and more recently the New Zealand Marine Protected Areas Policy and Implementation Plan [4]. In addition to marine reserves, several other types of protected areas are recognised in New Zealand as MPAs for the purposes of MPA planning, including some fisheries management zones and cable protection zones [7]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call