Abstract

The ability of an animal to learn the spatiotemporal variability of stimuli is known as time-place learning (TPL). The present study investigated the role of the food-entrainable oscillator (FEO) in TPL. Rats were trained in an operant conditioning chamber which contained two levers that distributed a food reward, such that one lever provided food rewards in morning sessions, while the other lever provided food rewards in afternoon sessions. We expected that having access to the FEO would provide rats with more accurate depictions of time of day, leading to better performance. Rats received either one meal per day (1M group), which permitted FEO access, or many meals per day (MM group), which prevented FEO access. As predicted, 1M rats had a significantly higher percentage of correct first presses than MM rats. Once rats successfully learned the task, probe tests were conducted to determine the timing strategy used. Of the 10 rats that successfully learned the time-place discrimination, six used a circadian timing strategy. Future research should determine whether the advantage in learning seen in the rats having access to the FEO is specific to the daily TPL task used in this study, or to learning and memory tasks more generally.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call