Abstract
We investigate the modeling and the numerical solution of machine learning problems with prediction functions which are linear combinations of elements of a possibly infinite dictionary of functions. We propose a novel flexible composite regularization model, which makes it possible to incorporate various priors on the coefficients of the prediction function, including sparsity and hard constraints. We show that the estimators obtained by minimizing the regularized empirical risk are consistent in a statistical sense, and we design an error-tolerant composite proximal thresholding algorithm for computing such estimators. New results on the asymptotic behavior of the proximal forward–backward splitting method are derived and exploited to establish the convergence properties of the proposed algorithm. In particular, our method features a o(1 / m) convergence rate in objective values.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.