Abstract

We show that a consistent modeling of porous flows needs at least one free collision relaxation rate to avoid a nonlinear dependency of the numerical errors on the viscosity. This condition is necessary to get the viscosity-independent permeability from the Stokes flow and to parametrize properly (with nondimensional physical numbers) the lattice Boltzmann Brinkman schemes. The two-relaxation-time (TRT) collision operator controls all coefficients of the higher-order corrections in steady solutions with a specific combination of its two collision rates, a possibility lacking for the Bhatnagar-Gross-Krook (BGK)-based single-relaxation-time schemes. The analysis is based on exact recurrence equations of the evolution equation and illustrated for the exact solutions of the Brinkman scheme in simply oriented parallel and diagonal channels. The apparent viscosity coefficient of the TRT Stokes-Brinkman scheme in arbitrary flow is only approximated. The compatibility of one-dimensional arbitrarily rotated flows with the nonlinear (Navier-Stokes) equilibrium is examined. An explicit dependency for all coefficients on the relaxation rates is presented for the infinite steady state Chapman-Enskog expansion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.