Abstract
A common problem in multivariate general linear models is partially missing response data. The simplest method of analysis in the presence of missing data has been to delete all observations on any individual with any missing data(listwise deletion) and utilize a traditional complete data approach. However: this can result in a great loss of information: and perhaps inconsistencies in the estimation of the variance-covariance matrix. In the generalized multivariate analysis of variance(GMANOVA) model with missing data: Kleinbaum(1973) proposed an estimated generalized least squares approach. In order to apply this: however: a consistent estimate of the variance-covariance matrix is needed. Kleinbaum proposed an estimator which is unbiased and consistent: but it does not take advantage of the fact that the underlying model is GMANOVA and not MANOVA. Using the fact that the underlying model is GMANOVA we have constructed four other con¬sistent estimators. A Monte Carlo simulation experiment is conducted tto further examine how well these estimators compare to the estimator proposed by Kleinbaum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.