Abstract

In this paper, we develop a two-step maximum likelihood estimator of time-varying loadings in high-dimensional factor models. We specify the loadings to evolve as stationary vector autoregressions (VAR) and show that consistent estimates of the loadings parameters can be obtained. In the first step, principal components are extracted from the data to form factor estimates. In the second step, the parameters of the loadings VARs are estimated as a set of linear regression models with time-varying coefficients. We document the finite-sample properties of the maximum likelihood estimator through an extensive simulation study and illustrate the empirical relevance of the time-varying loadings structure using a large quarterly dataset for the US economy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.