Abstract

ABSTRACT Fast radio bursts (FRBs) are short astrophysical transients of extragalactic origin. Their burst signal is dispersed by the free electrons in the large-scale-structure (LSS), leading to delayed arrival times at different frequencies. Another potential source of time delay is the well known Shapiro delay, which measures the space–space and time–time metric perturbations along the line-of-sight. If photons of different frequencies follow different trajectories, i.e. if the universality of free fall guaranteed by the weak equivalence principle (WEP) is violated, they would experience an additional relative delay. This quantity, however, is not observable at the background level as it is not gauge independent, which has led to confusion in previous papers. Instead, an imprint can be seen in the correlation between the time delays of different pulses. In this paper, we derive robust and consistent constraints from twelve localized FRBs on the violation of the WEP in the energy range between 4.6 and 6 meV. In contrast to a number of previous studies, we consider our signal to be not in the model, but in the covariance matrix of the likelihood. To do so, we calculate the covariance of the time delays induced by the free electrons in the LSS, the WEP breaking terms, the Milky Way and host galaxy. By marginalizing both host galaxy contribution and the contribution from the free electrons, we find that the parametrized post-Newtonian parameter γ characterizing the WEP violation must be constant in this energy range to 1 in 1013 at 68 per cent confidence. These are the tightest constraints to-date on Δγ in this low-energy range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.