Abstract

A generalized interface module was developed for coupling any thermal-hydraulic code to any spatial kinetic code. In the design used here the thermal-hydraulic and spatial kinetic codes function as independent processes and communicate using the Parallel Virtual Machine software. This approach helps maximize flexibility while minimizing modifications to the respective codes. Using this interface, the U.S. Nuclear Regulatory Commission (NRC) three-dimensional neutron kinetic code, Purdue Advanced Reactor Core Simulator (PARCS), has been coupled to the NRC system analysis codes RELAP5 and Modernized Transient Reactor Analysis Code (TRAC-M). Consistent comparison of code results for the Organization for Economic Cooperation and Development/Nuclear Energy Agency main steam line break benchmark problem using RELAP5/PARCS and TRAC-M/PARCS was made to assess code performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.