Abstract
Conventional co-rotational formulations for geometrically nonlinear analysis are based on the assumption that the finite element is only subjected to nodal loads and as a result, they are not accurate for the elements under distributed member loads. The magnitude and direction of member loads are treated as constant in the global coordinate system, but they are essentially varying in the local coordinate system for the element undergoing a large rigid body rotation, leading to the change of nodal moments at element ends. Thus, there is a need to improve the co-rotational formulations to allow for the effect. This paper proposes a new consistent co-rotational formulation for both Euler-Bernoulli and Timoshenko two-dimensional beam-column elements subjected to distributed member loads. It is found that the equivalent nodal moments are affected by the element geometric change and consequently contribute to a part of geometric stiffness matrix. From this study, the results of both eigenvalue buckling and second-order direct analyses will be significantly improved. Several examples are used to verify the proposed formulation with comparison of the traditional method, which demonstrate the accuracy and reliability of the proposed method in buckling analysis of frame structures under distributed member loads using a single element per member.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.