Abstract

In this study, the authors propose reliable sequences of binary coded symbol (BCS) modulation, and their characteristics and performances for Global Navigation Satellite System (GNSS) application are described. A BCS sequence vector is formed by eight variable length sub-chips of alternated + 1 and −1 (or −1 and + 1) values. A judicious choice of the sub-chips lengths of the BCS sequence permitted to propose several BCS sequences that provide high performances in terms of multipath mitigation, resistance to the noise and interferences rejection. An overview of the essential characteristics and the resulting autocorrelation functions (ACFs) and power spectral densities of the proposed BCS sequences were introduced. The latter ACFs have a sharp main peak due to the increase in the number of transitions of the BCS sequences within a chip interval, which corresponds to a larger slope of the discrimination function, and consequently a reduced range of search in the delay locked loop with a minimum calculation load. The theoretical and simulation results indicate that the proposed BCS sequences are more consistent compared to the conventional signals adopted by the GNSS navigation systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.