Abstract

This paper focuses on a non-standard constrained nonlinear optimal control problem in which the objective functional involves an integration over a space of stochastic parameters as well as an integration over the time domain. The research is inspired by the problem of optimizing the trajectories of multiple searchers attempting to detect non-evading moving targets. In this paper, we propose a framework based on the approximation of the integral in the parameter space for the considered uncertain optimal control problem. The framework is proved to produce a zeroth-order consistent approximation in the sense that accumulation points of a sequence of optimal solutions to the approximate problem are optimal solutions of the original problem. In addition, we demonstrate the convergence of the corresponding adjoint variables. The accumulation points of a sequence of optimal state-adjoint pairs for the approximate problem satisfy a necessary condition of Pontryagin Minimum Principle type, which facilitates assessment of the optimality of numerical solutions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call