Abstract

Many desert fishes, which evolved in isolated aquatic “islands” with limited predation pressure, have been severely impacted by non-native predators. These impacts have been attributed to the evolutionary loss of antipredator competence, known as the predator naiveté hypothesis. Recent work provided support for this hypothesis for one desert fish species. We sought to examine the generality of the predator naiveté hypothesis by evaluating antipredator competence in five populations of Red River pupfish (Cyprinodon rubrofluviatilis), a species that occupies habitats that vary in the degree of isolation and levels of fish species richness. Fish were exposed to a conspecific chemical alarm cue released from damaged epidermal tissue as a general assay of antipredator response. We found that pupfish from all five populations exhibited antipredator behavior in response to the alarm cue, regardless of the exposure to predation risk. These data provide evidence that antipredator responses to alarm cues are conserved in Red River pupfish, even in populations isolated from piscivorous species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.