Abstract
The statistical trajectory matching (STM) method was applied successfully to derive coarse grain (CG) models for bulk properties of homopolymers. The extension of the methodology for building CG models for statistical copolymer systems is much more challenging. We present here the strategy for developing CG models for styrene-butadiene-rubber, and we compare the quality of the resulting CG force fields on the structure and thermodynamics at different chemical compositions. The CG models are used through the use of a genuine mesoscopic method called the dissipative particle dynamics method and compared to high-resolution molecular dynamics simulations. We conclude that the STM method is able to produce coarse-grained potentials that are transferable in composition by using only a few reference systems. Additionally, this methodology can be applied on any copolymer system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.