Abstract

We consider constraint satisfaction problems with variables in continuous, numerical domains. Contrary to most existing techniques, which focus on computing one single optimal solution, we address the problem of computing a compact representation of the space of all solutions admitted by the constraints. In particular, we show how globally consistent (also called decomposable) labelings of a constraint satisfaction problem can be computed. Our approach is based on approximating regions of feasible solutions by 2 k -trees, a representation commonly used in computer vision and image processing. We give simple and stable algorithms for computing labelings with arbitrary degrees of consistency. The algorithms can process constraints and solution spaces of arbitrary complexity, but with a fixed maximal resolution. Previous work has shown that when constraints are convex and binary, path-consistency is sufficient to ensure global consistency. We show that for continuous domains, this result can be generalized to ternary and in fact arbitrary n-ary constraints using the concept of (3,2)-relational consistency. This leads to polynomial-time algorithms for computing globally consistent labelings for a large class of constraint satisfaction problems with continuous variables.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.