Abstract

The lockdown measures enacted to control the COVID-19 pandemic in Wuhan, China, resulted in a suspension of nearly all non-essential human activities on January 23, 2020. Nevertheless, the lockdown provided a natural experiment to understand the consistency of the relationship between the urban form and air pollution with different compositions of locally or regionally transported sources. This study investigated the variations in six air pollutants (PM2.5, PM10, NO2, CO, O3, and SO2) in Wuhan before and during the lockdown and in the two same time spans in 2021. Moreover, a hierarchical agglomerative cluster analysis was conducted to differentiate the relative levels of pollutants and to detect the relationships between the air pollutants and the urban form during these four periods. Several features depicting the urban physical structures delivered consistent impacts. A lower building density and plot ratio, and a higher porosity always mitigated the concentrations of NO2 and PM2.5. However, they had inverse effects on O3 during the non-lockdown periods. PM10, CO, and SO2 concentrations have little correlation with the urban form. This study improves the comprehensive understanding of the effect of the urban form on ambient air pollution and suggests practical strategies for mitigating air pollution in Wuhan.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.