Abstract

Wong and Yu [Generalized MLE of a joint distribution function with multivariate interval-censored data, J. Multivariate Anal. 69 (1999) 155–166] discussed generalized maximum likelihood estimation of the joint distribution function of a multivariate random vector whose coordinates are subject to interval censoring. They established uniform consistency of the generalized MLE (GMLE) of the distribution function under the assumption that the random vector is independent of the censoring vector and that both of the vector distributions are discrete. We relax these assumptions and establish consistency results of the GMLE under a multivariate mixed case interval censorship model. van der Vaart and Wellner [Preservation theorems for Glivenko–Cantelli and uniform Glivenko–Cantelli class, in: E. Gine, D.M. Mason, J.A. Wellner (Eds.), High Dimensional Probability, vol. II, Birkhäuser, Boston, 2000, pp. 115–133] and Yu [Consistency of the generalized MLE with multivariate mixed case interval-censored data, Ph.D Dissertation, Binghamton University, 2000] independently proved strong consistency of the GMLE in the L 1 ( μ ) -topology, where μ is a measure derived from the joint distribution of the censoring variables. We establish strong consistency of the GMLE in the topologies of weak convergence and pointwise convergence, and eventually uniform convergence under appropriate distributional assumptions and regularity conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.