Abstract
The consistency of identification algorithms for systems with colored noises is a main topic in system identification. This paper focuses on the extended stochastic gradient (ESG) identification algorithm for the multivariable linear systems with moving average noises. By integrating the noise regression terms and the noise model parameters into the information matrix and the parameter vector, and based on the gradient search principle, the ESG algorithm is presented. The unknown noise terms in the information matrix are replaced with their estimates. The convergence analysis shows that the parameter estimation error converges to zero under a persistent excitation condition. Two simulation examples are given to illustrate the effectiveness of the algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.