Abstract

Numerous methods for inferring species-level phylogenies under the coalescent model have been proposed within the last 20 years, and debates continue about the relative strengths and weaknesses of these methods. One desirable property of a phylogenetic estimator is that of statistical consistency, which means intuitively that as more data are collected, the probability that the estimated tree has the same topology as the true tree goes to 1. To date, consistency results for species tree inference under the multispecies coalescent (MSC) have been derived only for summary statistics methods, such as ASTRAL and MP-EST. These methods have been found to be consistent given true gene trees but may be inconsistent when gene trees are estimated from data for loci of finite length. Here, we consider the question of statistical consistency for four taxa for SVDQuartets for general data types, as well as for the maximum likelihood (ML) method in the case in which the data are a collection of sites generated under the MSC model such that the sites are conditionally independent given the species tree (we call these data coalescent independent sites [CIS] data). We show that SVDQuartets is statistically consistent for all data types (i.e., for both CIS data and for multilocus data), and we derive its rate of convergence. We additionally show that ML is consistent for CIS data under the JC69 model and discuss why a proof for the more general multilocus case is difficult. Finally, we compare the performance of ML and SDVQuartets using simulation for both data types. [Consistency; gene tree; maximum likelihood; multilocus data; hylogenetic inference; species tree; SVDQuartets.].

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call