Abstract
We consider Bayesian information collection, in which a measurement policy collects information to support a future decision. This framework includes ranking and selection, continuous global optimization, and many other problems in sequential experimental design. We give a sufficient condition under which measurement policies sample each measurement type infinitely often, ensuring consistency, i.e., that a globally optimal future decision is found in the limit. This condition is useful for verifying consistency of adaptive sequential sampling policies that do not do forced random exploration, making consistency difficult to verify by other means. We demonstrate the use of this sufficient condition by showing consistency of two previously proposed ranking and selection policies: optimal computing budget allocation (OCBA) for linear loss, and the knowledge-gradient policy with independent normal priors. Consistency of the knowledge-gradient policy was shown previously, while the consistency result for OCBA is new.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.