Abstract

Identification of patients with progressive chronic kidney disease (CKD) and those likely to respond to candidate therapeutics is urgently needed. Functional MRI measurements have shown promise. However, knowledge about the consistency of the measurements is essential to conduct longitudinal studies. To investigate the consistency of repeated functional MRI measurements in healthy subjects. Prospective, longitudinal study. Seventeen healthy subjects were examined on two different occasions, 18 months apart. Multiple gradient-recalled-echo, 2D navigator-gated flow-sensitive alternating inversion recovery True-FISP and spin-echo planar diffusion-weighted sequences were used on a 3T scanner. Images were acquired on two different scanner configurations. Blood oxygenation level-dependent (BOLD) R2*, arterial spin labeling (ASL) perfusion-derived blood flow (BF) and apparent diffusion coefficient (ADC) maps were analyzed using a custom image processing toolbox. Regions of interest (ROIs) were placed on renal cortex, medulla, and whole kidney. Multiple researchers were involved in defining the ROIs. Intra- and intersubject coefficients of variation (CV) and Bland-Altman plots were used to measure consistency and evaluate bias in the measurements. A nonparametric Wilcoxon test was used to compare differences between two timepoints. The intrasubject CV for R2* and ADC were 6.8% and 5.3% with small (-3.8 and 5.3%) bias, respectively, comparing baseline and 18-month data. Intrasubject CV for renal cortex BF was higher (18.7%) compared to R2* and ADC, but comparable to prior literature values over shorter durations. It also exhibited a larger bias (-15.4%) between two timepoints and significantly lower values (P = 0.022) at 18-month data. All three MRI parameters over 18 months, even with a scanner upgrade and involving multiple observers, showed good consistency. These results are useful for the interpretation of longitudinal data and support the use of these methods to monitor progression in patients with CKD. 1 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2018;48:514-521.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.