Abstract

Abstract Anchor-based techniques reduce the computational complexity of spectral clustering algorithms. Although empirical tests have shown promising results, there is currently a lack of theoretical support for the anchoring approach. We define a specific anchor-based algorithm and show that it is amenable to rigorous analysis, as well as being effective in practice. We establish the theoretical consistency of the method in an asymptotic setting where data is sampled from an underlying continuous probability distribution. In particular, we provide sharp asymptotic conditions for the number of nearest neighbors in the algorithm, which ensure that the anchor-based method can recover with high probability disjoint clusters that are mutually separated by a positive distance. We illustrate the performance of the algorithm on synthetic data and explain how the theoretical convergence analysis can be used to inform the practical choice of parameter scalings. We also test the accuracy and efficiency of the algorithm on two large scale real data sets. We find that the algorithm offers clear advantages over standard spectral clustering. We also find that it is competitive with the state-of-the-art LSC method of Chen and Cai (Twenty-Fifth AAAI Conference on Artificial Intelligence, 2011), while having the added benefit of a consistency guarantee.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.