Abstract

We apply the algebraic approach for Constraint Satisfaction Problems (CSPs) with counting quantifiers, developed by Bulatov and Hedayaty, for the first time to obtain classifications for computational complexity. We develop the consistency approach for expanding polymorphisms to deduce that, if H has an expanding majority polymorphism, then the corresponding CSP with counting quantifiers is tractable. We elaborate some applications of our result, in particular deriving a complexity classification for partially reflexive graphs endowed with all unary relations. For each such structure, either the corresponding CSP with counting quantifiers is in P, or it is NP-hard.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.