Abstract

Poisson regression models for count variables have been utilized in many applications. However, in many problems overdispersion and zero-inflation occur. We study in this paper regression models based on the generalized Poisson distribution (Consul (1989)). These regression models which have been used for about 15 years do not belong to the class of generalized linear models considered by (McCullagh and Nelder (1989)) for which an established asymptotic theory is available. Therefore we prove consistency and asymptotic normality of a solution to the maximum likelihood equations for zero-inflated generalized Poisson regression models. Further the accuracy of the asymptotic normality approximation is investigated through a simulation study. This allows to construct asymptotic confidence intervals and likelihood ratio tests.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.