Abstract
Space–time autoregressive (STAR) models, introduced by Cliff and Ord [Spatial autocorrelation (1973) Pioneer, London] are successfully applied in many areas of science, particularly when there is prior information about spatial dependence. These models have significantly fewer parameters than vector autoregressive models, where all information about spatial and time dependence is deduced from the data. A more flexible class of models, generalized STAR models, has been introduced in Borovkovaet al. [Proc. 17th Int. Workshop Stat. Model. (2002), Chania, Greece] where the model parameters are allowed to vary per location. This paper establishes strong consistency and asymptotic normality of the least squares estimator in generalized STAR models. These results are obtained under minimal conditions on the sequence of innovations, which are assumed to form a martingale difference array. We investigate the quality of the normal approximation for finite samples by means of a numerical simulation study, and apply a generalized STAR model to a multivariate time series of monthly tea production in west Java, Indonesia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.