Abstract
AbstractTraditional options pricing relies on underlying asset volatility and contract properties. However, asset volatility is affected by the “lead–lag effects,” known as the “momentum spillover effect.” To address this, we propose a proxy measuring correlated options' influence based on maturity date. Findings indicate that 1‐day‐lagged proxy indicators positively impact option returns. Furthermore, to capture the dynamic effects of correlated options, we introduce a deep graph neural network‐based model (GNN‐MS). Empirical results on Shanghai Stock Exchange 50 exchange‐traded fund options reveal GNN‐MS significantly outperforms classics, enhancing root‐mean‐square error by at least 8.81%. This study provides novel insights into option pricing considering momentum spillover effects.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.