Abstract

Mining generates a significant quantity of waste material including ballast, gravel, and slags, which are often deposited in areas without taking into account the environment impacts and the need to ensure the physical and chemical stability of the disposed waste. One of the less studied problems is the emission of particulate matter produced by wind erosion at the dumpsites. This erosion is mainly caused by two factors, wind speed and turbulence, due to surface phenomenon. Until now, the design of waste dumpsites in the Chilean mining industry has not considered these environmental conditions. Efforts to minimize disposal costs have always been achieved by depositing ballast without considering these variables. When wind impacts this unprotected surface, it creates a source of dust that requires some special attention. The problem that this research tries to solve is to reduce particulate material to the atmosphere from waste dumps in which, under certain atmospherics and geographic conditions, specifically on winter season, its concentrations overpass the maximum limit allowed by law, generating bronchopulmonary diseases and even closing partially or totally mine operation. The result is the creation of a waste dumpsite design model, with its corresponding algorithms, which will allow optimization of the waste dumpsite design. From these results, future researches could explore more sustainable mining, such as unit operations, drilling, blasting, load and crushing material, reducing particulate material emissions to the atmosphere, and minimizing environmental impact due to exploitation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call