Abstract
Due to high metabolic activity, proliferating cells continuously generate free radicals, which induce DNA double-strand breaks (DSB). Fluorescently tagged nuclear foci of DNA repair protein 53 binding protein-1 (53BP1) are used as a standard metric for measuring DSB formation at baseline and in response to environmental insults such as radiation. Here we demonstrate that the background level of spontaneous 53BP1+ foci formation can be modeled mathematically as a function of cell confluence, which is a metric of their proliferation rate. This model was validated using spontaneous 53BP1+ foci data from 72 cultures of primary skin fibroblasts derived from 15 different strains of mice, showing a ∼10-fold decrease from low to full confluence that is independent of mouse strain. On the other hand, the baseline level of spontaneous 53BP1+ foci in a fully confluent cell population was strain-dependent, suggesting genomic associations, and correlated with radiation sensitivity based on previous measurements in the same cell lines. Finally, we have developed an online open-access tool to correct for the effect of cell confluence on 53BP1+ foci-based quantification of DSB. This tool provides guidelines for the number of cells required to reach statistical significance for the detection of DSB induced by low doses of ionizing radiation as a function of confluence and time postirradiation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.