Abstract

Some mathematical calculations were done that provided information about the structure and biochemistry of polyhydroxyalkanoic acid (PHA) granules and about the amounts of the different constituents that contribute to the PHA granules. The data obtained from these calculations are compared with data from the literature, which show that PHA granules consist not only of the polyester but also of phospholipids and proteins. The latter are referred to as granule-associated proteins, and they are always located at the surface of the PHA granules. A concept is proposed that distinguishes four classes of structurally and functionally different granule-associated proteins: (i) class I comprises the PHA synthases, which catalyze the formation of ester linkages between the constituents; (ii) class II comprises the PHA depolymerases, which are responsible for the intracellular degradation of PHA, (iii) class III comprises a new type of protein, which is referred to as phasins and which has most probably a function analogous to that of oleosins in oilseed plants, and (iv) class IV comprises all other proteins, which have been found to be associated with the granules but do not belong to classes I-III. Particular emphasis is placed on the phasins, which constitute a significant fraction of the total cellular protein. Phasins are assumed to form a close protein layer at the surface of the granules, providing the interface between the hydrophilic cytoplasm and the much more hydrophobic core of the PHA inclusion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call