Abstract
It has previously been shown that the no-slip boundary condition leads to a singularity at a moving contact line and that this forces one to admit some form of slip. Present considerations on the energetics of slip due to shear stress lead to a yield stress boundary condition. A model for the distortion of the liquid state near solid boundaries gives a physical basis for this boundary condition. The yield stress condition is illustrated by an analysis of a slender drop rolling down an incline. That analysis provides a formula for the frictional drag resisting the drop movement. With the present boundary condition the length of the slip region becomes a property of the fluid flow.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.