Abstract

The staining properties of unifilarly bromodeoxyuridine (BrdU)-substituted chromatids were compared using fluorescent-plus-Giemsa (FPG) staining methods. It was found that the staining intensity of chromatids which had incorporated BrdU in the next to last S-phase is less than that of chromatids whose BrdU-containing strand came from the last cell cycle. Thus, FPG-staining is not a function of the number of BrdU-substituted DNA strands alone. These findings lead to the conclusion that the primary point of action of PFG staining leading to sister chromatid differentiation (SCD) are chromosomal proteins which have been altered in the replication of BrdU-substituted DNA and that the demonstration of the SCD and replication patterns with the same staining procedure is based on different mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.