Abstract

In non-strongly interacting co-amorphous systems, addition of a polymer, to further stabilize the co-amorphous systems, may influence the phase behavior between the components. In this study, the evolution of the composition of the amorphous phase in the ternary system carvedilol (CAR)-tryptophan (TRP)-hydroxypropylmethyl cellulose (HPMC) was investigated, based upon previously formed and characterized binary systems to which the third component was added (CAR - TRP + HPMC, CAR - HPMC + TRP and TRP - HPMC + CAR). Ball milling was used as the preparation method for all binary and ternary systems. The influence of the milling time on the co-amorphous systems was monitored by DSC and XRPD. Addition of HPMC reduced the miscibility of CAR with TRP due to hydrogen bond formation between CAR and polymer. These bonds became dominant for the interaction pattern. In addition, when CAR or TRP exceeded the miscibility limit in HPMC, phase separation and eventually crystallization of CAR and TRP was observed. All ternary co-amorphous systems eventually reached the same composition, albeit following different paths depending on the initially used binary system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call