Abstract

Low-dimensional coordination polymers such as one-dimensional chains often exhibit gated guest sorption accompanying structural transition at a temperature (TG), which is associated with an external pressure of the guest (PG) characteristic to the material and guest used. This phenomenon can be evaluated using the Clausius-Clapeyron relationship with the equation d(ln PG)/d(1/TG) = ΔHG/R, where ΔHG and R are the transition enthalpy and gas constant, respectively. In this study, gated CO2 adsorption behavior was investigated in a one-dimensional chain based on a benzoate-bridged paddlewheel diruthenium(II,II) complex with a phenazine (phz) linker, [Ru2(p-MeOPhCO2)4(phz)] (1; p-MeOPhCO2- = p-anisate). Surprisingly, 1 underwent gate opening (GO)/closing (GC) at a much higher TG, e.g., 385 K for GC, under PCO2 = 100 kPa than those previously reported for such chain compounds, which usually appeared in the temperature range of 200-270 K. The transition entropy ΔSG in each system plays a key role in shifting TG; 1 results in a much smaller |ΔSG| in the series. Only 1 produced a CO2-accessible two-dimensional topological pore in its CO2-adsorbed phase 1⊃CO2, whereas the others reported previously produced one-dimensional or discrete topological pores for CO2 accommodation, strongly reflecting the degree of freedom of CO2 molecules in pores, which is related to ΔSG.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call