Abstract

Highly accurate and efficient cubatures based on the double exponential quadrature rules are presented for the computation of weakly singular integrals arising in Galerkin mixed potential integral equation formulations. Due to their unique ability to handle non-smooth kernels, the proposed integration schemes can safely replace (in a “plug-n-play” sense) the traditional Gauss-Legendre rules in the existing singularity cancellation and singularity subtraction methods. Numerical examples using RWG basis functions confirm the excellent performance of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.